1,808 research outputs found

    3D numerical modelling of twisting cracks under bending and torsion of skew notched beams

    Get PDF
    The testing of mode III and mixed mode failure is every so often encountered in the dedicated literature of mechanical characterization of brittle and quasi-brittle materials. In this work, the application of the mixed strain displacement e-ue-u finite element formulation to three examples involving skew notched beams is presented. The use of this FE technology is effective in problems involving localization of strains in softening materials. The objectives of the paper are: (i) to test the mixed formulation in mode III and mixed mode failure and (ii) to present an enhancement in terms of computational time given by the kinematic compatibility between irreducible displacement-based and the mixed strain-displacement elements. Three tests of skew-notched beams are presented: firstly, a three point bending test of a PolyMethyl MethaAcrylate beam; secondly, a torsion test of a plain concrete prismatic beam with square base; finally, a torsion test of a cylindrical beam made of plain concrete as well. To describe the mechanical behavior of the material in the inelastic range, Rankine and Drucker-Prager failure criteria are used in both plasticity and isotropic continuum damage formats. The proposed mixed formulation is capable of yielding results close to the experimental ones in terms of fracture surface, peak load and global loss of carrying capability. In addition, the symmetric secant formulation and the compatibility condition between the standard irreducible method and the strain-displacement one is exploited, resulting in a significant speedup of the computational procedure.Peer ReviewedPostprint (author's final draft

    Probabilistic design and upgrade of wastewater treatment plants in the EU Water Framework directive context

    Get PDF
    The EU Water Framework Directive requires compliance with effluent and receiving water quality standards. This increased complexity implies that the evaluation of the impact of measures should be evaluated with adequate tools, both from the methodological point of view – by applying systems analysis investigations and modelling uncertainty assessment tools – and by making the developed methodology applicable in practice. Urban wastewater systems (UWWSs) are crucial components of river basins, since they usually contribute significantly to the pollution loads. They also have more flexibility in operation and management than other subsystems as agriculture. One part of this dissertation tries to answer the question “where” to improve the UWWS in a basin by means of systems analysis. A case study is tackled with the help of substance flow analysis (SFA) and of performance indicators. SFA allowed to identify the pressures on the receiving water. The indicators highlighted the critical structures in the basin. The spatial scale of the study was found to be of paramount importance. The other part of this dissertation deals with the question “how” to improve the UWWS, by proposing a systematic methodology to design correction measures, illustrated by the example of WWTP design and upgrade. The first step is the generation of influent time series to be fed to the WWTP models by means of a new phenomenological model of the draining catchment and sewer system. Ten different treatment process configurations were selected for the comparison. Further, eleven upgrade options were selected for evaluation, partly requiring real-time control (RTC) and partly the construction of additional treatment volume. For the immission-based evaluation, the integration of the WWTP model with a river model was made by means of the continuity-based interfacing method (CBIM). The propagation of the uncertainty on model parameters was performed with Monte Carlo simulations. Given the assumed boundary conditions, alternating systems show the best treatment cost-efficiency. RTC upgrades showed good potential for low-cost compliance, but with higher risk of limits exceedance. The immission-based evaluation revealed that considering the system from a holistic point of view can lead to substantial savings

    Modelling of priority pollutants releases from urban areas

    Get PDF
    In the framework of the EU project ScorePP (Source Control Options for Reducing Emissions of Priority Pollutants), dynamic PPs (priority pollutants) fate models are being developed to assess appropriate strategies for limiting the release of PPs from urban sources and for treating PPs on a variety of spatial scales. Different possible sources of PP releases were mapped and both their release pattern and their loads were quantified as detailed as possible. This paper focuses on the link between the gathered PP sources data and the dynamic models of the urban environment. This link consists of: (1) a method for the quantitative and structured storage of temporal emission pattern information, (2) the coupling of GIS-based spatial emission source data with temporal emission pattern information and (3) the generation of PP release time series to feed the dynamic sewer catchment model. Steps 2 and 3 were included as the main features of a dedicated software tool. Finally, this paper also illustrates the method’s applicability to generate model input timeseries for generic pollutants (N, P and COD/BOD) in addition to priority pollutants

    Use of habitat suitability modeling in the integrated urban water system modeling of the Drava River (Varazdin, Croatia)

    Get PDF
    The development of practical tools for providing accurate ecological assessment of rivers and species conditions is necessary to preserve habitats and species, stop degradation and restore water quality. An understanding of the causal mechanisms and processes that affect the ecological water quality and shape macroinvertebrate communities at a local scale has important implications for conservation management and river restoration. This study used the integration of wastewater treatment, river water quality and ecological assessment models to study the effect of upgrading a wastewater treatment plant (WWTP) and their ecological effects for the receiving river. The WWTP and the water quality and quantity of the Drava river in Croatia were modelled in the software WEST. For the ecological modeling, the approach followed was to build habitat suitability and ecological assessment models based on classification trees. This technique allows predicting the biological water quality in terms of the occurrence of macroinvertebrates and the river status according to ecological water quality indices. The ecological models developed were satisfactory, and showed a good predictive performance and good discrimination capacity. Using the integrated ecological model for the Drava river, three scenarios were run and evaluated. The scenario assessment showed that it is necessary an integrated approach for the water management of the Drava river, which considers an upgrading of the WWTP with Nitrogen and Phosphorous removal and the treatment of other diffuse pollution and point sources (including the overflow of the WWTP). Additionally, if an increase in the minimum instream flow after the dams is considered, a higher dilution capacity and a higher self-cleaning capability could be obtained. The results proved that integrated models like the one presented here have an added value for decision support in water management. This kind of integrated approach is useful to get insight in aquatic ecosystems, for assessing investments in sanitation infrastructure of urban wastewater systems considering both, the fulfilling of legal physical chemical emission limits and the ecological state of the receiving waters

    Stress-accurate Mixed FEM for soil failure under shallow foundations involving strain localization in plasticity

    Get PDF
    The development of slip lines, due to strain localization, is a common cause for failure of soil in many circumstances investigated in geotechnical engineering. Through the use of numerical methods - like finite elements - many practitioners are able to take into account complex geometrical and physical conditions in their analyses. However, when dealing with shear bands, standard finite elements display lack of precision, mesh dependency and locking. This paper introduces a (stabilized) mixed finite element formulation with continuous linear strain and displacement interpolations. Von Mises and Drucker-Prager local plasticity models with strain softening are considered as constitutive law. This innovative formulation succeeds in overcoming the limitations of the standard formulation and provides accurate results within the vicinity of the shear bands, specifically without suffering from mesh dependency. Finally, 2D and 3D numerical examples demonstrate the accuracy and robustness in the computation of localization bands, without the introduction of additional tracking techniques as usually required by other methods. (C) 2014 Elsevier Ltd. All rights reserved.Peer ReviewedPostprint (author’s final draft
    • …
    corecore